Precision Made Air Powered Vacuum Pumps with a Very High Flow at a Low Vacuum Level for Specialized Applications

High Vacuum and High Output Flow Using Minimal Compressed Air
The FT Series Adjustable Flow Tubes offer a cost-effective method for producing high vacuum and high output flow using a minimal amount of compressed air.

High Vacuum Flow/Material Handling
When used as a vacuum, the FT Series can generate high amounts of flow to quickly remove large volumes of air. This is especially useful for handling porous material (e.g., foam or fabric) where leakage is a problem.

High Output Flow/Blower
When used to produce high output flow, the FT Series is an ideal alternative to expensive electric blowers or raw compressed air lines. Made of aluminum to precise computer numerical control (CNC) machine tolerances. These pumps have an anodized finish for durability, and feature a straight-through bore design that allows material to move from end-to-end without clogging for maintenance-free operation.

Features
- High vacuum and high output flow
- Field adjustable to application
- Low air consumption
- Compact size
- Instant on/off
- No O-rings or gaskets
- No moving parts to clog
- Rugged design for extreme conditions
- Consistent performance
- Safe operation
- No electricity at pump
- No heat generated
- Explosion proof
- Air bearing
- Fume removal
- Cooling
- Drying
- Chip and dust removal
- Part ejection
- Automated sheet/paper feeders
- Assembly and palletizers
- Tank purging
- Inflation/deflation
- Conveyor transfer
- Porous pick and place
- Packing delicate or porous products (e.g., foam or felt egg crate sheets, IV bags, perforated metal, fan scrolls, circuit boards)

Applications
- Air bearing
- Fume removal
- Cooling
- Drying
- Chip and dust removal
- Part ejection
- Automated sheet/paper feeders
- Assembly and palletizers
- Tank purging
- Inflation/deflation
- Conveyor transfer
- Porous pick and place
- Packing delicate or porous products (e.g., foam or felt egg crate sheets, IV bags, perforated metal, fan scrolls, circuit boards)

<table>
<thead>
<tr>
<th>Part Number</th>
<th>FT020</th>
<th>FT050</th>
<th>FT075</th>
<th>FT100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bore I.D. [in. (mm)]</td>
<td>0.25 (6.3)</td>
<td>0.50 (12.7)</td>
<td>0.75 (19.1)</td>
<td>1.00 (25.4)</td>
</tr>
<tr>
<td>*Air Usage [SCFM (l/min.)]</td>
<td>3 (85)</td>
<td>9 (255)</td>
<td>9 (255)</td>
<td>9 (255)</td>
</tr>
<tr>
<td>*Output [SCFM (l/min.)]</td>
<td>18 (340)</td>
<td>75 (2124)</td>
<td>110 (3115)</td>
<td>145 (4106)</td>
</tr>
<tr>
<td>Maximum Vacuum [in. hg (mm hg)]</td>
<td>5 (127)</td>
<td>3 (76)</td>
<td>1.5 (38)</td>
<td>1 (25)</td>
</tr>
<tr>
<td>Amplification Ratio</td>
<td>6:1</td>
<td>8:1</td>
<td>12:1</td>
<td>16:1</td>
</tr>
<tr>
<td>A Overall Diameter [in. (mm)]</td>
<td>1.32 (33.4)</td>
<td>1.90 (49)</td>
<td>2.38 (60.4)</td>
<td>2.38 (60.4)</td>
</tr>
<tr>
<td>B Exhaust Diameter [in. (mm)]</td>
<td>0.53 (13.5)</td>
<td>1.00 (25.4)</td>
<td>1.25 (31.8)</td>
<td>1.50 (38.1)</td>
</tr>
<tr>
<td>C Approximate Overall Length [in. (mm)]</td>
<td>3.75 (95.3)</td>
<td>4.50 (114.5)</td>
<td>4.97 (126)</td>
<td>4.97 (126)</td>
</tr>
<tr>
<td>D Port Location [in. (mm)]</td>
<td>2.10 (53.5)</td>
<td>2.13 (54.0)</td>
<td>2.63 (66.7)</td>
<td>2.53 (64.1)</td>
</tr>
<tr>
<td>E Inlet Port Size</td>
<td>G 1/8"</td>
<td>G 1/4"</td>
<td>G 1/4"</td>
<td>G 1/4"</td>
</tr>
<tr>
<td>F Barb Size [in. (mm)]</td>
<td>1.00 (25.4)</td>
<td>1.50 (38.1)</td>
<td>2.00 (52)</td>
<td>2.00 (52)</td>
</tr>
<tr>
<td>G Barb Length [in. (mm)]</td>
<td>0.94 (24)</td>
<td>0.94 (24)</td>
<td>0.94 (24)</td>
<td>0.94 (24)</td>
</tr>
<tr>
<td>Optional Clamp Mount</td>
<td>CLAMP32P</td>
<td>CLAMP51P</td>
<td>CLAMP59P</td>
<td>CLAMP59P</td>
</tr>
</tbody>
</table>

* Air usage and output are based on an input pressure of 80 PSIG.
** Note: Optional CLAMP51P requires tape wrap to fit tightly on FT050.